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Abstract
The problem of the choice of tensor product decomposition in a system of
two fermions with the help of Bogoliubov transformations of creation and
annihilation operators is discussed. The set of physical states of the composite
system is restricted by the superselection rule forbidding the superposition
of fermions and bosons. It is shown that the Wootters concurrence is not
the proper entanglement measure in this case. The explicit formula for the
entanglement of formation is found. This formula shows that the entanglement
of a given state depends on the tensor product decomposition of a Hilbert space.
It is shown that the set of separable states is narrower than in the two-qubit
case. Moreover, there exist states which are separable with respect to all tensor
product decompositions of the Hilbert space.

PACS numbers: 03.67.Mn, 03.65.Ud

Entanglement is the key notion of quantum information theory and plays a significant role in
most of its applications. The entanglement of a physical system is always relative to a particular
set of experimental capabilities (see, e.g., [1, 2]), which is connected with decompositions
of the system into subsystems. From the theoretical point of view this is closely related to
possible choices of the tensor product decomposition (TPD) of the Hilbert space of the system.
As a consequence, the following question arises: how entangled is a given state with respect
to a particular TPD?

In this letter we discuss the problem of the choices of TPD in a system of two fermions,
neglecting their spatial degrees of freedom and modifying the tensor product in the rings of
operators because of anticommuting canonical variables. We show that TPDs are connected
with each other by Bogoliubov transformations of creation and annihilation operators. We
also study the behaviour of the entanglement of the system under these transformations.
The importance of such an investigation can be illustrated for example by the fact that the
Bogoliubov transformations used in the derivation of the Unruh effect also lead to the change
of entanglement [3]. A different approach to the entanglement in the system of two identical
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fermions, based on the asymmetric decomposition of the algebra generated by ai, a
†
i (i = 1, 2)

into a tensor product of two subalgebras was taken up in [4]. Some aspects of the entanglement
for a two-fermion system were also discussed in [5].

The theory of entanglement can be seen as the general theory of state transformations
that can be performed on multipartite systems, with the restriction that only local operations
and classical communications (LOCC) can be implemented [6]. For the same reason, it
was expected that additional restrictions should lead to new interesting physical effects and
applications. Recently, it has been shown that such a restriction can be given by a superselection
rule (SSR) [7, 8].

In this work we restrict the set of physical states of the composite system by the requirement
that we prohibit superpositions of fermions and bosons. This leads us to the SSR that is a
weaker restriction (i.e., it admits a larger set of states) than the SSR based on the conservation
of the number of particles [7]. Moreover, we find the entanglement of formation taking into
account the restriction imposed by our SSR.

Let us consider the Hilbert space H ∼= C
4 with an orthonormal basis {|m, n〉}m,n=0,1.

With this basis we associate the following two operators:

a1 = |0, 0〉〈1, 0| − |0, 1〉〈1, 1|, (1a)

a2 = |0, 0〉〈0, 1| + |1, 0〉〈1, 1|. (1b)

One can easily check that these operators and their Hermitian conjugations fulfil the following
relations:

{ai, aj } = 0,
{
ai, a

†
j

} = δij , i, j = 1, 2, (2)

where {. , .} stands for anticommutator. Operators a
†
i generate all the basis vectors from the

‘vacuum state’ |0, 0〉 via the relations

|1, 0〉 = a
†
1|0, 0〉, (3a)

|0, 1〉 = a
†
2|0, 0〉, (3b)

|1, 1〉 = a
†
2a

†
1|0, 0〉, (3c)

while the vacuum is annihilated by ai , i.e. ai |0, 0〉 = 0, i = 1, 2. We use the occupation
number basis, i.e., the Fock basis, not the so-called ‘computational basis’. Thus with every
orthonormal basis we can associate some representation of the algebra (2). On the other hand
it is clear that equations (2) can be interpreted as canonical anticommutation relations for a
two-fermion system.

Every two orthonormal bases in H are connected by some unitary transformation
belonging to the group U(4). In the ring of operators these changes of bases are related
to Bogoliubov transformations of creation and annihilation operators which will be discussed
later on.

One can naively expect that, as in the bosonic case, the operators a1 and a2 should have the
form a ⊗ id and id ⊗ a, respectively, where a is an annihilation operator for a single fermion
acting in C

2, that is

a |0〉 = 0, a |1〉 = |0〉, (4a)

a†|0〉 = |1〉, a† |1〉 = 0, (4b)

{a, a†} = id, (4c)
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and id denotes the identity operator. However this is not the case because a ⊗ id and id ⊗ a

necessarily commute so they cannot fulfil the canonical anticommutation relations (2). In
order to construct a1, a2 out of the single annihilation operator a and to provide a natural
tensor product interpretation of basis vectors as |m, n〉 = |m〉 ⊗ |n〉 we have to modify only
the tensor product of the operators acting in C

2. Hereafter we will denote the new tensor
multiplication by the usual symbol ⊗. Such a modified tensor product is defined by the graded
(supersymmetric) multiplication rule

(A ⊗ b)(a ⊗ B) = (−1)F(a)F (b)Aa ⊗ bB, (5)

where a, b are monomials in a, a†, i.e. a, b ∈ {id, a, a†, aa†, a†a}, A,B are arbitrary operators
acting in C

2 and the ‘fermion number’ F(a) is equal to the number of creation operators
minus the number of annihilation operators building the monomial a, i.e. F(id) = 0, F (a†) =
−F(a) = 1, F(aa†) = F(a†a) = 0. Consequently the Hermitian conjugation in this tensor
product is of the form

(a ⊗ b)† = (−1)F(a)F (b)(a† ⊗ b†). (6)

The tensor multiplication introduced above is a special case of a more general structure
known in mathematical physics as the braided tensor product [9]. As we can see from
relation (5), the new braided tensor product for monomials even in a, a† behaves like the
standard tensor product.

Finally, the relationship between the tensor product of operators and the tensor product
of vectors is given by

(id ⊗ id)(|m〉 ⊗ |n〉) = |m〉 ⊗ |n〉, (7a)

(a ⊗ id)(|m〉 ⊗ |n〉) = (−1)na |m〉 ⊗ |n〉, (7b)

(a† ⊗ id)(|m〉 ⊗ |n〉) = (−1)na† |m〉 ⊗ |n〉, (7c)

(id ⊗ a)(|m〉 ⊗ |n〉) = |m〉 ⊗ a|n〉, (7d )

(id ⊗ a†)(|m〉 ⊗ |n〉) = |m〉 ⊗ a†|n〉. (7e)

Now the annihilation and creation operators acting in the space C
2 ⊗ C

2 and satisfying (2)
take the desired form

a1 = a ⊗ id, a2 = id ⊗ a, (8a)

a
†
1 = a† ⊗ id, a

†
2 = id ⊗ a†. (8b)

Note that in the above equations ⊗ denotes the new tensor multiplication thus
equations (4a)–(7e) imply that operators (8a)–(8b) fulfil the canonical anticommutation
relations (2). In particular, the matrix elements of operators (8a)–(8b) and (1a)–(1b) are
identical in the basis {|m, n〉}m,n=0,1.

Similarly, as in the case of quantum theory of fermionic fields in the system under
consideration, observables are restricted to combinations of even products of creation and
annihilation operators. In particular the local observables are combinations of id ⊗ id and
N1 = a†a⊗id or id ⊗ id and N2 = id ⊗ a†a. It is implied by the SSR related to the requirement
that the operator (−1)F̂ , where F̂ is the fermion number operator, should commute with all
observables [10]. It means that superpositions of bosons and fermions are forbidden. In the
basis (3a)–(3c) (−1)F̂ = diag{1,−1,−1, 1}. Alternatively, this SSR is a consequence of the
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requirement that the squared time reflection operator must commute with all observables (see,
e.g., [11]). Indeed, the antiunitary time inversion operator is defined here as follows

Ta1T−1 = a2, Ta2T−1 = −a1, (9)

T |0, 0〉 = |0, 0〉. (10)

Thus T2 = (−1)F̂ . Due to the SSR the density matrix has to commute with (−1)F̂ , so the
general state of this system is represented by the following density matrix:

ρ =




w1 0 0 b1

0 w2 b2 0
0 b∗

2 v2 0
b∗

1 0 0 v1


 , (11)

where wi, vi � 0,
∑2

i=1(wi + vi) = 1 and |bi |2 � wivi, i = 1, 2. Consequently, possible
states of subsystems obtained from (11) by partial traces are

ρ1 =
(

w1 + v2 0
0 w2 + v1

)
, (12a)

ρ2 =
(

w1 + w2 0
0 v1 + v2

)
. (12b)

Note that the diagonal form of (12a)–(12b) conforms with the SSR in spaces of subsystems.
Moreover, the states (12a)–(12b) exhaust all possible states of the subsystems. Therefore our
subsystems are independent in the sense of the definition of the algebraic independence of
subsystems [4, 12]. This independence is due to the SSR (compare [4] where it was shown that
in general algebras of observables of two identical fermions are nonindependent). The natural
question arises: what is the form of the separable states for this system? According to Werner’s
definition [13] the state is separable if it can be written in the form ρ = ∑

i piρ
i
1 ⊗ ρi

2, where
ρi

1 and ρi
2 are admissible states of subsystems and

∑
i pi = 1, pi � 0. Therefore, taking into

account that ρi
1 and ρi

2 are of the form (12a)–(12b), the separable states have the surprisingly
simple diagonal form

ρsep =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


 , (13)

with
∑

i λi = 1, λi � 0. Consequently, nondiagonal density matrices are nonseparable. Thus
in this case the standard method of calculating entanglement measures should be taken with
care. Indeed, as an example let us consider the Werner state [13, 14]

ρW =




1+γ

4 0 0 γ

2

0 1−γ

4 0 0
0 0 1−γ

4 0
γ

2 0 0 1+γ

4


 , γ ∈ [−1/3, 1], (14)

which belongs to the admissible states (11). The Wootters concurrence [15] of this state is
equal to zero for γ ∈ [−1/3, 1/3], therefore for two qubits the Werner state is separable for
such values of γ . On the other hand, in our case this state is separable only when γ = 0. Thus
the Wootters concurrence does not define entanglement measure in our case.
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Instead, let us calculate directly the entanglement of formation [6], i.e.

E(ρ) = min
∑

i

piS
(
ρi

A

)
, (15)

where S(ρA) = − Tr ρA log2 ρA is the von Neumann entropy and the minimum is taken over
all the possible realizations of the state ρ = ∑

i pi |ψi〉〈ψi | with ρi
A = TrB(|ψi〉〈ψi |). Taking

into account the special form of the density matrix (11) we can find the explicit formula for
the entanglement of formation

E(ρ) =
2∑

i=1

(wi + vi)Si (16)

where

Si =



0 if wi = vi and bi = 0

−1

2

[
(1 − ξi) log2

1 − ξi

2
+ (1 + ξi) log2

1 + ξi

2

]
otherwise

(17)

and

ξi = wi − vi√
(wi − vi)2 + 4|bi |2

. (18)

It is interesting that a formula similar to (17) was obtained in [16] for the so-called correlational
entropy of the two-level system. Note that the maximal value of E(ρ) is equal to 1. In the
case of the Werner state (14) the entanglement of formation (16) is

E(ρW) =



1 + γ

2
if γ �= 0,

0 if γ = 0.
(19)

Thus, as expected, E(ρW) �= 0 for entangled (nondiagonal) states and E(ρW) = 0 for a
separable (diagonal) state. For γ = 1 we have the maximally entangled Werner state. Note
that the restriction of admissible states by the SSR implies that in our case we have no
asymmetry in the definition of the entanglement of formation, in contrast to observations
of [4].

Let us consider the problem of decomposition of our system into two subsystems.
Such a decomposition corresponds to the different choices of canonical variables ai, a

†
i .

This is extremely important because each choice of ai, a
†
i defines in the Hilbert space H

the corresponding tensor product structure (5)–(7e) such that the creation and annihilation
operators take the form analogous to (8a)–(8b). Each TPD defines a set of local observables
of the form A ⊗ id and id ⊗B (cf the discussion after (8a)–(8b)). Moreover, the notion of a
local observer is determined by his experimental access to local observables (see, e.g., [1]).

Different choices of canonical variables ai, a
†
i are connected by transformations

which preserve the canonical anticommutation relations (2) (Bogoliubov transformations1).
Therefore Bogoliubov transformations give us all possible decompositions of the two-fermion
system into two subsystems (two fermions). Such decompositions of the system correspond
to the tensor product decompositions of the space H ∼= C

2 ⊗ C
2, appropriate to the definition

of the subsystems. In the case under consideration the problem of finding all possible TPDs
consistent with our SSR is equivalent to determining all possible Bogoliubov transformations
commuting with the superselection operator T2 = (−1)F̂ .

1 By Bogoliubov transformations we mean here all transformations of creation and annihilation operators (linear as
well as nonlinear) which do not change the canonical anticommutation relations.
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Let us note first that operators ai, a
†
i in every orthonormal basis can be represented in the

form (3a)–(3c) and vice versa such operators define an orthonormal basis via (3a)–(3c). Thus
different choices of these operators are connected with different choices of orthonormal bases
in the Hilbert space. Therefore

a′
i = UaiU

†, (20)

where U is an unitary matrix. As we have mentioned above, the consistency with the SSR
means that U commutes with T2 = (−1)F̂ = diag{1,−1,−1, 1}. So U can be represented as
the following product of unitary matrices:

U =




1 0 0 0
0 α∗ −β 0
0 β∗ α 0
0 0 0 1







ζ 0 0 −ω∗

0 1 0 0
0 0 1 0
ω 0 0 ζ ∗







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iχ


 , (21)

with |α|2 + |β|2 = 1 and |ζ |2 + |ω|2 = 1, where we took into account the fact that
equation (20) determines U up to an overall phase. Thus all Bogoliubov transformations
admissible by the SSR form the group SU(2) ⊗ U(2). Applying these transformations to
the explicit matrix form of ai, a

†
i calculated from (1a)–(1b), one can show that in the ring of

creation and annihilation operators the transformations (20) are realized as

• SU(2) transformations which do not mix creation and annihilation operators(
a′

1
a′

2

)
=

(
α β

−β∗ α∗

) (
a1

a2

)
, (22)

• SU(2) transformations which mix creation and annihilation operators(
a′

1

a
′†
2

)
=

(
ζ ω

−ω∗ ζ ∗

) (
a1

a
†
2

)
, (23)

• nonlinear one-parameter transformations

a′
1 = a1 eiχN2 = a1[1 + (eiχ − 1)N2], (24a)

a′
2 = a2 eiχN1 = a2[1 + (eiχ − 1)N1]. (24b)

Note that (24a)–(24b) for χ = π are the so-called Klein–Wigner transformations
(cf [4]). The Bogoliubov transformations which lead to physically distinguishable TPDs
should change the local observables Ni = a

†
i ai . Therefore such transformations have the form

(22) with both α �= 0, β �= 0 and/or (23) with both ζ �= 0, ω �= 0.
Now, the natural question arises: what does the same state look like for local observers

connected with different TPDs? The answer is quite obvious: if their TPDs are connected
by Bogoliubov transformations then density matrices representing the state are connected by
similarity transformations, i.e. ρ ′ = UρU †. However, in general, such transformations change
the entanglement measure E(ρ), i.e. entanglement depends on the choice of TPD (and hence
the local observers). In particular, for any state, there exists a pair of observers for whom
this state is separable, since the density matrix (11) can always be diagonalized by means
of the transformations (21). We point out that there exists a class of superseparable states
ρss = 1

2 diag{s, 1 − s, 1 − s, s}, s ∈ [0, 1], which are separable for every observer. Note also
that in the case of two qubits only one superseparable state exists, namely the maximally
mixed state ρ0 = 1

4I .
Now we show that it is possible to construct dynamics consistent with our SSR. For such a

dynamics admissible TPDs are related to symmetries of the Hamiltonian. An example of that
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dynamics is the Thirring model [17] in (1 + 0)-dimensional space–time describing a fermionic
quantum mechanical system. The corresponding Lagrangian is of the form

L =
2∑

i=1

(
iψ

†
i ∂tψi − mψ

†
i ψi

) − λ

(
2∑

i=1

ψ
†
i ψi

)2

. (25)

The solutions of the equations of motion derived from the Lagrangian (25) are

ψi(t) = ai e−it (m+λ+2λNj ), i �= j, (26)

where the time-independent operators ai and a
†
i satisfying (2) can be represented in the form

(8a)–(8b). The Hamiltonian of this system is

H = (m + λ)(N1 + N2) + 2λN1N2 (27)

and describes two fermionic oscillators with the quartic interaction term. Note that T2 = (−1)F̂

commutes with H, thus Thirring model dynamics undergoes our SSR.
In the special case of λ = − 1

2m all the Bogoliubov transformations (22)–(24b) form
the symmetry group of H, i.e. H(a, a†) = H(a′, a′†). Thus, this symmetry group gives us
a freedom with a choice of a concrete decomposition of the system into two subsystems.
Consequently the related TPDs are connected by the Bogoliubov transformations (22)–(24b).

In conclusion, we have investigated the dependence of entanglement for a two-fermion
system on tensor product decompositions in the presence of the superselection rule. We have
shown that the Wootters concurrence is not a proper entanglement measure in this case. The
crucial point in finding an explicit form of entanglement of formation for such a system was
determining the states of subsystems, admissible by the superselection rule. We would like
to stress that these states are not qubit states. It is interesting that the set of separable states
is narrower than in the two-qubit case, namely it consists of only the states represented by
diagonal density matrices. Moreover, we found the class of superseparable states, i.e. the
states which are separable with respect to all tensor product decompositions of the Hilbert
space.
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has been partially supported by the Polish Ministry of Scientific Research and Information
Technology under the grant no PBZ-MIN-008/P03/2003.

References

[1] Zanardi P, Lidar D A and Lloyd S 2004 Phys. Rev. Lett. 92 060402
[2] Zanardi P 2001 Phys. Rev. Lett. 87 077901
[3] Vedral V 2003 Cent. Eur. J. Phys. 1 289
[4] Moriya H 2002 Lett. Math. Phys. 60 109
[5] Shi Y 2003 Phys. Rev. A 67 024301

Ghirardi G C and Marinatto L 2004 Phys. Rev. A 70 012109
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